Cones Embedded in Hyperbolic Manifolds
نویسنده
چکیده
We show that the existence of a maximal embedded tube in a hyperbolic n-manifold implies the existence of a certain conical region. One application is to establish a lower bound on the volume of the region outside the tube, thereby improving estimates on volume and estimates on lengths of geodesics in small volume hyperbolic 3-manifolds. We also provide new bounds on the injectivity radius and diameter of an n-manifold.
منابع مشابه
Toroidal Dehn fillings on hyperbolic 3-manifolds
We determine all hyperbolic 3-manifolds M admitting two toroidal Dehn fillings at distance 4 or 5. We show that if M is a hyperbolic 3manifold with a torus boundary component T0, and r, s are two slopes on T0 with ∆(r, s) = 4 or 5 such that M(r) and M(s) both contain an essential torus, then M is either one of 14 specific manifolds Mi, or obtained from M1, M2, M3 or M14 by attaching a solid tor...
متن کاملCurvature Bounds for Surfaces in Hyperbolic 3-manifolds
We prove existence of thick geodesic triangulations of hyperbolic 3-manifolds and use this to prove existence of universal bounds on the principal curvatures of surfaces embedded in hyperbolic 3-manifolds.
متن کاملVirtually Embedded Boundary Slopes
We show that for certain hyperbolic manifolds all boundary slopes are slopes of π1-injective immersed surfaces, covered by incompressible embeddings in some finite cover. The manifolds include hyperbolic punctured torus bundles and hyperbolic two-bridge knots.
متن کاملLocal Rigidity of Hyperbolic 3-manifolds after Dehn Surgery
It is well known that some lattices in SO(n, 1) can be nontrivially deformed when included in SO(n+1, 1) (e.g., via bending on a totally geodesic hypersurface); this contrasts with the (super) rigidity of higher rank lattices. M. Kapovich recently gave the first examples of lattices in SO(3, 1) which are locally rigid in SO(4, 1) by considering closed hyperbolic 3-manifolds obtained by Dehn fil...
متن کاملMinimal Surfaces in Geometric 3-manifolds
In these notes, we study the existence and topology of closed minimal surfaces in 3-manifolds with geometric structures. In some cases, it is convenient to consider wider classes of metrics, as similar results hold for such classes. Also we briefly diverge to consider embedded minimal 3-manifolds in 4-manifolds with positive Ricci curvature, extending an argument of Lawson to this case. In the ...
متن کامل